Parallel optical trap assisted nanopatterning on rough surfaces.

نویسندگان

  • Y C Tsai
  • K H Leitz
  • R Fardel
  • A Otto
  • M Schmidt
  • C B Arnold
چکیده

There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Sub-Micron Features On Rough Surfaces Using Optical Trap Assisted Nanopatterning

Near-field intensity enhancement enables laser modification of materials with feature sizes below the classical diffraction limit. However, the need to maintain close distances between the objective element and the substrate typically limit demonstrations of this technology to flat surfaces, even though there are many cases where the ability to produce sub-micron features on rough or structured...

متن کامل

Non-spherical particles for optical trap assisted nanopatterning.

Optical trap assisted nanopatterning is a laser direct-write technique that uses an optically trapped microsphere as a near-field objective. The type of feature that one can create with this technique depends on several factors, one of which is the shape of the microbead. In this paper, we examine how the geometry of the bead affects the focus of the light through a combination of experiments a...

متن کامل

Microbead dynamics in optical trap assisted nanopatterning

Optical near-field techniques allow one to overcome diffraction by positioning an optical element in close proximity to the surface of interest. In optical trap assisted nanopatterning, this optical element is a microbead optically trapped above the substrate in a liquid environment. Using high-speed microscopy, we show that under certain conditions, the laser pulse creates a gas bubble under t...

متن کامل

Subwavelength direct-write nanopatterning using optically trapped microspheres.

A number of non-lithographic techniques are now available for processing materials on the nanoscale, including optical techniques capable of producing features that are much smaller than the wavelength of light used. However, these techniques can be limited in speed, ease of use, cost of implementation, or the range of patterns they can write. Here we report how Bessel beam laser trapping of mi...

متن کامل

Nanoscale ablation through optically trapped microspheres

The ability to directly create patterns with size scales below 100 nm is important for many applications where the production or repair of high resolution and density features is needed. Laser-based direct-write methods have the benefit of being able to quickly and easily modify and create structures on existing devices, but ablation can negatively impact the overall technique. In this paper we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 23 16  شماره 

صفحات  -

تاریخ انتشار 2012